## ADVANCED OPTIMIZATION TECHNIQUES (MACHINE DESIGN)

## Duration: 3 hours

Max Marks: 60
Answer the following questions.

1. Use Revised Simplex method to solve the following. 15 M Maximize $\mathrm{F}=\mathrm{X}_{1}+2 \mathrm{X}_{2}+\mathrm{X}_{3}$
Subject to $2 \mathrm{X}_{1}+\mathrm{X}_{2}-\mathrm{X}_{3} \leq 2$

$$
\begin{gathered}
-2 X_{1}+X_{2}-5 X_{3} \geq-6 \\
X_{1}, X_{2}, X_{3} \geq 0
\end{gathered}
$$

(OR)
2. a) Explain the computational procedure used in dynamic programming.
b) Solve the following LP problem using Dynamic programming.

Max $Z=8 X_{1}+7 X_{2}$
Subject to: $2 \mathrm{X}_{1}+\mathrm{X}_{2} \leq 10$
$5 \mathrm{X}_{1}+2 \mathrm{X}_{2} \leq 20$
$\mathrm{X}_{1}, \mathrm{X}_{2} \geq 0$
3. a) State the necessary and sufficient conditions for the minimum of a function $f(x)$.
b) A beam of uniform rectangular cross section is to be cut from a $\log$ having a circular cross section of diameter 2 a . The beam has to be used as a cantilever beam (the length is fixed) to carry a concentrated load at the free end. Find the dimensions of the beam that correspond to the maximum tensile (bending) stress carrying capacity.
(OR)
4. a) Show that the Newton's method finds the minimum of a quadratic function in one iteration.
b) Use Newton's method, Minimize

$$
\begin{align*}
& \qquad f\left(X_{1}, X_{2}\right)=X_{1}-X_{2}+2 X_{1}^{2}+2 X_{1} X_{2}+X_{2}^{2} \\
& \text { By taking the starting point as } \quad X 1=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
\end{align*}
$$

5. a) Write about working principle of genetic algorithms. 6 M
b) Discuss the Differences and similarities between genetic algorithms and Genetic Programming.
6. a) How Random Population is generated in Genetic Programming.
b) How is the fuzzy feasible domain defined for a problem with inequality constraints?
7. Solve the following integer programming problem using Branch and Bound algorithm.
Maximize, $\mathrm{Z}=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}$
Subject to: $5 \mathrm{x}_{1}+7 \mathrm{x}_{2} \leq 35$
$4 x_{1}+9 x_{2} \leq 36$
$x_{1}, x_{2}$ non negative integers.
(OR)
8. Explain optimization of path synthesis of a four-bar mechanism.

15 M

